Phylogenetic analysis of condensation domains in the nonribosomal peptide synthetases.
نویسندگان
چکیده
Condensation (C) domains in the nonribosomal peptide synthetases are capable of catalyzing peptide bond formation between two consecutively bound various amino acids. C-domains coincide in frequency with the number of peptide bonds in the product peptide. In this study, a phylogenetic approach was used to investigate structural diversity of bacterial C-domains. Phylogenetic trees show that the C-domains are clustered into three functional groups according to the types of substrate donor molecules. They are l-peptidyl donors, d-peptidyl donors, and N-acyl donors. The fact that C-domain structure is not subject to optical configuration of amino acid acceptor molecules supports an idea that the conversion from l to d-form of incorporating amino acid acceptor occurs during or after peptide bond formation. l-peptidyl donors and d-peptidyl donors are suggested to separate before separating the lineage of Gram-positive and Gram-negative bacteria in the evolution process.
منابع مشابه
Phylogenetic Study of Polyketide Synthases and Nonribosomal Peptide Synthetases Involved in the Biosynthesis of Mycotoxins
Polyketide synthase (PKSs) and nonribosomal peptide synthetase (NRPSs) are large multimodular enzymes involved in biosynthesis of polyketide and peptide toxins produced by fungi. Furthermore, hybrid enzymes, in which a reducing PKS region is fused to a single NRPS module, are also responsible of the synthesis of peptide-polyketide metabolites in fungi. The genes encoding for PKSs and NRPSs have...
متن کاملAminoacyl-SNACs as small-molecule substrates for the condensation domains of nonribosomal peptide synthetases.
BACKGROUND Nonribosomal peptide synthetases (NRPSs) are large multidomain proteins that catalyze the formation of a wide range of biologically active natural products. These megasynthetases contain condensation (C) domains that catalyze peptide bond formation and chain elongation. The natural substrates for C domains are biosynthetic intermediates that are covalently tethered to thiolation (T) ...
متن کاملGeneration of D amino acid residues in assembly of arthrofactin by dual condensation/epimerization domains.
The first 6 residues of the biosurfactant lipopeptidolactone arthrofactin have the D configuration, yet none of the 11 modules of the nonribosomal peptide synthetase assembly line have epimerization domains. We show that the two-module ArfA subunit and the first module of the ArfB subunit, which act in tandem to produce the N-acyl-D-Leu1-D-Asp2-D-Thr3-S-protein intermediate, activate the L amin...
متن کاملNonribosomal peptide synthesis in Aspergillus fumigatus and other fungi.
In fungi, nonribosomal peptide synthetases (NRP synthetases) are large multi-functional enzymes containing adenylation, thiolation (or peptidyl carrier protein, PCP) and condensation domains. These enzymes are often encoded within gene clusters. Multiple NRP synthetase ORFs have also been identified in fungi (14 in Aspergillus fumigatus). LeaA, a methyltransferase, is involved in secondary meta...
متن کاملReview Nonribosomal peptide synthesis in Aspergillus fumigatus and other fungi
In fungi, nonribosomal peptide synthetases (NRP synthetases) are large multi-functional enzymes containing adenylation, thiolation (or peptidyl carrier protein, PCP) and condensation domains. These enzymes are often encoded within gene clusters. Multiple NRP synthetase ORFs have also been identified in fungi (14 in Aspergillus fumigatus). LeaA, a methyltransferase, is involved in secondary meta...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- FEMS microbiology letters
دوره 252 1 شماره
صفحات -
تاریخ انتشار 2005